ING2043 Fire Dynamics

Course description for academic year 2020/2021

Due to Covid-19, changes may occur in course descriptions for 2020/2021. Changes in each course will be published on Studentweb or Canvas. When a course description has been changed there, the description on web is no longer valid. Examples of such changes could be accomplishment of practice, course type, or whether letter grades or passed/not passed will be used as grading scales.

Contents and structure

The course will providestudents with thorough understanding of chemistry, physics andfluid mechanicsfor firesandinteractionswiththe firecommunity.Introduction tofirecauses,harmful effects offiresand possibleconsequence reducing measurescontainedin the subject.

Learning Outcome


The student

  • Can analyze and use chemical reactions in connection with a fire related to energy production, flame temperature and combustion products.
  • Can apply the theory of heat transfer during conduction, convection and heat radiationin related to fire.
  • Can explain fire as a phenomenon including the stages of fire.
  • Can explain and calculate how a fire is influenced by the environment (smoke, walls, roof). The knowledge will be developed through theory and experiment.
  • Can explain and calculate smoke production, plume theory and transport of smoke.
  • Can explain and calculate ignition, flammability limits and damaging effects of smoke.
  • Can explain how fire affects the community through fire causes and fire statistics.
  • Has knowledge of research and development in the field.
  • Can keep his knowledge up to date within the field.



The student can

  • Calculate heat transfer through structures and between solids.
  • Calculate flammability limits, flame temperature, ignition temperature of liquids and gases.
  • Consider and calculate fire development.
  • Calculate smoke development and smoke spreading.
  • Calculate fire influence on simple structures.
  • Measure fire parameters such as temperature, heat flux and mass.
  • Apply academic knowledge supported by literature and research results, to solve problems and make founded choices.
  • demonstrates a critical view on professional practice, individually and in teamwork, and adjusts this under guidance.

-General qualification:

The student:

  • Can present the specialized knowledge, laboratory and measuring reports.
  • Can use computer tools to perform calculations and present the results.
  • Can reflect over his work in a team and schedule tasks.
  • Can identify solutions in his field and contribute to discussion related to impact and significance of the solution.

Entry requirements


Recommended previous knowledge

Chemistry and Environment; Physics; Analysis and Linear Algebra; Thermodynamics and Fluid Mechanics .

Teaching methods

Lectures, exercises, demonstrations, laboratory exercises and use of simple computer tools.

Course requirements



Part 1: Portfolio, accounts for 50 % of the final grade.

Part 2: Written exam, 3 hours, accounts for 50 % of the final grade.

Grade:  A - E / passed;  F / failed.

Both parts must be passed.

Examination support material

Written exam: Simple calculator: Allowed calculator is Casio fx-82 (all varieties: ES, ES Plus, EX, Solar etc.)

More about examination support material

Course reductions

  • SIK201S (1) - Bridging course for Master in Fire Safety Engineering - summer course - Reduction: 5 studypoints
  • SIK201 (1) - Bridging course for Master in Fire Safety Engineering - Reduction: 5 studypoints
  • ING2010 (1) - Fire Dynamics - Reduction: 10 studypoints
  • ING2022 (1) - Fire Dynamics - Reduction: 10 studypoints
  • ING2034 (1) - Fire Dynamics - Reduction: 10 studypoints